Recognition of Laban Effort qualities from hand motion

(Erkennung von Laban Effort Qualitäten aus der Handbewegung)

In this paper, we conduct a study for recognizing motion qualities in hand gestures using virtual reality trackers attached to the hand. From this 6D signal, we extract Euclidean, equi-affine and moving frame features and compare their effectiveness in the task of recognizing Laban Effort qualities. Our experimental results reveal that equi-affine features are highly discriminant features for this task. We also compare two classification methods on this task. In the first method, we trained separate HMM models for the 6 Laban Effort qualities (light, strong, sudden, sustained, direct, indirect). In the second method, we trained separate HMM models for the 8 Laban motion verbs (dab, glide, float, flick, thrust, press, wring, slash) and combined them to recognize individual qualities. In our experiments, the second method gives improved results. Together, those findings suggest that low-dimensional signals from VR trackers can be used to predict motion qualities with reasonable precision.
© Copyright 2020 Proceedings of the 7th International Conference on Movement and Computing. Veröffentlicht von ACM. Alle Rechte vorbehalten.

Bibliographische Detailangaben
Schlagworte:
Notationen:Biowissenschaften und Sportmedizin Naturwissenschaften und Technik Spielsportarten
Tagging:Signal Präzision
Veröffentlicht in:Proceedings of the 7th International Conference on Movement and Computing
Sprache:Englisch
Veröffentlicht: New York ACM 2020
Schriftenreihe:MOCO '20
Online-Zugang:http://doi.org/10.1145/3401956.3404227
Seiten:8
Dokumentenarten:Artikel
Level:hoch