Perception and action in sports. On the functionality of foveal and peripheral vision

(Wahrnehmung und Aktion im Sport. Zur Funktionalität des fovealen und peripheren Sehens)

An optimal coupling between perception and action is crucial for successful performance in sports. In basketball, for example, a stable fixation onto the basket helps to gain precise visual information of the target to successfully throw a basketball into the basket. In basketball-defense situations, however, opposing players cutting to the basket can be detected by using peripheral vision as less precise information are sufficient to mark this player. Those examples elucidate that to solve a given task foveal and peripheral vision can be used to acquire the necessary information. Following this reasoning, the current state of our framework will be presented that allows one to predict the functionality of one or the other or both depending on the current situation and task demands. In more detail, for tasks that require high motor precision like in far-aiming tasks, empirical evidence suggests that stable foveal fixations facilitate inhibitory processes of alternative action parameterization over movement planning and control. However, more complex situations (i.e., with more than one relevant information source), require peripheral vision to process relevant information by positioning gaze at a functional location which might actually be in free space between the relevant information sources. Based on these elaborations, we will discuss complementarities, the role of visual attention as well as practical implications. In sports, athletes have to solve various tasks that require different solutions. To make this clear, imagine, you would be standing on a basketball court at the free-throw line with the task to shoot the ball into the basket. After two shot attempts, however, it is likely that you must immediately return to your own basket to defend the opponents' offensive actions. Obviously, the first and second task demand different motor actions. But, do they also require different gaze behaviors? Ask yourself: When solving these two tasks, where would you look and attend at? In the shooting task, you might look at the basket, the rim, or maybe at your hands while performing the shooting action. And in the defensive situation, you could focus the ball carrier, one of your teammates or maybe the opponent you are responsible for. Are these behaviors substantially different and what might be underlying functions? Exactly these questions which touch upon eye-movement associated behavioral costs have been addressed by our research group (for on overview on the current state of the art, e.g., Williams and Jackson, 2019). In this Perspective Paper, we will summarize current (own) research, underlying mechanisms and theoretical frameworks of cost-reducing eye movements. Different to earlier publications (e.g., Vater et al., 2019b), a recently developed framework proposing the functionality of foveal and peripheral vision in sports will be presented which states the complementarity of these two behavior. Beforehand, a glimpse of the physiological basis of the human eye and gaze behavior will be provided.
© Copyright 2019 Frontiers in Sports and Active Living. Frontiers Media. Alle Rechte vorbehalten.

Bibliographische Detailangaben
Schlagworte:
Notationen:Biowissenschaften und Sportmedizin Trainingswissenschaft
Veröffentlicht in:Frontiers in Sports and Active Living
Sprache:Englisch
Veröffentlicht: 2019
Online-Zugang:https://doi.org/10.3389/fspor.2019.00066
Heft:66
Dokumentenarten:Artikel
Level:hoch