Effect of FIO2 on oxidative stress during interval training at moderate atltiude
(Auswirkungen von FIO2 auf den oxidativen Stress während Intervalltraining auf mittlerer Höhe)
Purpose:
To evaluate the effect of different fractions of inspired oxygen (FIO2) on oxidative stress during a high-intensity interval workout in trained endurance athletes residing at altitude.
Methods:
Subjects (N = 19) were trained male cyclists who were residents of moderate altitude (1800-1900 m). Testing was conducted at 1860 m (PB 610-612 torr, PIO2 ~128 torr). Subjects performed three randomized, single-blind trials consisting of a standardized interval workout (6 x 100 kJ) while inspiring a medical-grade gas with FIO2 0.21 (PIO2 ~128 torr), FIO2 0.26 (PIO2 ~159 torr), and FIO2 0.60 (PIO2 ~366 torr). Serum lipid hydroperoxides (LOOH) and whole-blood reduced glutathione (GSH) were measured 60 min preexercise and immediately postexercise, and analyzed using standard colorimetric assays. Urinary malondialdehyde (MDA) and 8-hydroxydeoxyguanosine (8-OHdG) were measured 24 h preexercise and 24 h postexercise, and analyzed via HPLC and ELISA, respectively.
Results:
Compared with the control trial (FIO2 0.21), total time (min:s) for the 100-kJ work interval was faster (5% in FIO2 0.26; 8% in FIO2 0.60 (P < 0.05)) and power output (W) was higher (5% in FIO2 0.26, 8% in FIO2 0.60 (P < 0.05)) in the supplemental oxygen trials. There was a significant pre- versus postexercise main effect (P < 0.05) for LOOH and GSH; however, there were no significant differences in LOOH or GSH between the FIO2 trials. MDA and 8-OHdG were unaffected by either the interval training session or FIO2.
Conclusion:
Supplemental oxygen used in conjunction with high-intensity interval training at altitude ("live high + train low via supplemental O2" (LH + TLO2)) results in a significant improvement in exercise performance without inducing additional free radical oxidative stress as reflected in hematological and urinary biomarkers.
© Copyright 2004 Medicine & Science in Sports & Exercise. Lippincott Williams & Wilkins. Alle Rechte vorbehalten.
| Schlagworte: | |
|---|---|
| Notationen: | Biowissenschaften und Sportmedizin Trainingswissenschaft |
| Veröffentlicht in: | Medicine & Science in Sports & Exercise |
| Sprache: | Englisch |
| Veröffentlicht: |
Hagerstown
2004
|
| Online-Zugang: | https://doi.org/10.1249/01.MSS.0000145442.25016.DD |
| Jahrgang: | 36 |
| Heft: | 11 |
| Seiten: | 1888-1894 |
| Dokumentenarten: | Artikel |
| Level: | hoch |