VNL-STES: a benchmark dataset and model for spatiotemporal event spotting in volleyball analytics

(VNL-STES: ein Benchmark-Datensatz und Modell zur raum-zeitlichen Ereigniserkennung in der Volleyball-Analyse)

Volleyball video analytics require precisely detecting both the timing and location of key events. We introduce a novel task: Precise Spatiotemporal Event Spotting, which seeks to accurately determine when and where important events occur within a video. To this end, we created the Volley- ball Nations League (VNL) Dataset, including 8 full games, 1,028 rally videos, and 6,137 annotated events with both temporal and spatial localization. Our best model, the Spatiotemporal Event Spotter (STES), outperforms the current state-of-the-art (SOTA) in temporal action spotting by 9.86 mean Temporal Average Precision (mTAP) and achieves a notable 80.21 mAP for spatial localization, accurately pinpointing event locations within a 2-6 pixel range. To the best of our knowledge, this is the first work addressing Precise Spatiotemporal Event Spotting in volleyball, establishing a strong baseline for future research in this domain. The code and data for this paper are available publicly at: https://hoangqnguyen.github.io/stes
© Copyright 2025 Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops. Veröffentlicht von IEEE. Alle Rechte vorbehalten.

Bibliographische Detailangaben
Schlagworte:
Notationen:Spielsportarten Naturwissenschaften und Technik
Tagging:künstliche Intelligenz Videoanalyse
Veröffentlicht in:Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops
Sprache:Englisch
Veröffentlicht: Piscataway, NJ IEEE 2025
Online-Zugang:https://openaccess.thecvf.com/content/CVPR2025W/CVSPORTS/html/Nguyen_VNL-STES_A_Benchmark_Dataset_and_Model_for_Spatiotemporal_Event_Spotting_CVPRW_2025_paper.html
Seiten:5861-5870
Dokumentenarten:Artikel
Level:hoch