Learning-based tracking of fast moving objects
(Lernbasierte Verfolgung von sich schnell bewegenden Objekten)
Tracking fast moving objects, which appear as blurred streaks in video sequences, is a difficult task for standard trackers as the object position does not overlap in consecutive video frames and texture information of the objects is blurred. Up-to-date approaches tuned for this task are based on background subtraction with static background and slow deblurring algorithms. In this paper, we present a tracking-bysegmentation approach implemented using state-of-the-art deep learning methods that performs near-realtime tracking on realworld video sequences. We implemented a physically plausible FMO sequence generator to be a robust foundation for our training pipeline and demonstrate the ease of fast generator and network adaptation for different FMO scenarios in terms of foreground variations
© Copyright 2020 arXiv e-print repository. Alle Rechte vorbehalten.
| Schlagworte: | |
|---|---|
| Notationen: | Naturwissenschaften und Technik Spielsportarten |
| Tagging: | deep learning künstliche Intelligenz |
| Veröffentlicht in: | arXiv e-print repository |
| Sprache: | Englisch |
| Veröffentlicht: |
2020
|
| Online-Zugang: | https://arxiv.org/pdf/2005.01802.pdf |
| Heft: | preprint |
| Seiten: | 1-7 |
| Dokumentenarten: | Artikel |
| Level: | hoch |