Detecting swimmers in unconstrained videos with few training data

(Erkennung von Schwimmern in unkontrollierten Videos mit wenigen Trainingsdaten)

In this work, we propose a method to detect swimmers in unconstrained swimming videos, using a Unet-based model trained on a small dataset. Our main motivation is to make the method accessible without spending much time or money in annotation or computation while maintaining performances. The swimming videos can be recorded from various locations with different settings (distance and angle to the pool, light conditions, reflections, camera resolution), which alleviates a lot of the usual video capture constraints. As a result, our model reaches top-performances in detection compared to other methods. Every algorithm described in the paper is accessible online at https://github.com/njacquelin/swimmers_detection.
© Copyright 2022 Machine Learning and Data Mining for Sports Analytics. MLSA 2021. Communications in Computer and Information Science. Veröffentlicht von Springer. Alle Rechte vorbehalten.

Bibliographische Detailangaben
Schlagworte:
Notationen:Spielsportarten Naturwissenschaften und Technik
Tagging:Algorithmus
Veröffentlicht in:Machine Learning and Data Mining for Sports Analytics. MLSA 2021. Communications in Computer and Information Science
Sprache:Englisch
Veröffentlicht: Cham Springer 2022
Schriftenreihe:Communications in Computer and Information Science, 1571
Online-Zugang:https://doi.org/10.1007/978-3-031-02044-5_12
Seiten:145-154
Dokumentenarten:Artikel
Level:hoch