Numerical simulation of vortex-induced drag of elastic swimmer models

(Numerische Simulation des vortex-induzierten Widerstandes von elastischen Schwimmermodellen)

We present numerical simulations of simplified models for swimming organisms or robots, using chordwise flexible elastic plates. We focus on the tip vortices originating from three-dimensional effects due to the finite span of the plate. These effects play an important role when predicting the swimmer`s cruising velocity, since they contribute significantly to the drag force. First we simulate swimmers with rectangular plates of different aspect ratios and compare the results with a recent experimental study. Then we consider plates with expanding and contracting shapes. We find the cruising velocity of the contracting swimmer to be higher than the rectangular one, which in turn is higher than the expanding one. We provide some evidence that this result is due to the tip vortices interacting differently with the swimmer.
© Copyright 2019 Theoretical and Applied Mechanics Letters. The Chinese Society of Theoretical and Applied Mechanics. Alle Rechte vorbehalten.

Bibliographische Detailangaben
Schlagworte:
Notationen:Naturwissenschaften und Technik
Veröffentlicht in:Theoretical and Applied Mechanics Letters
Sprache:Englisch
Veröffentlicht: 2019
Online-Zugang:https://doi.org/10.1016/j.taml.2017.10.001
Jahrgang:7
Seiten:280-285
Dokumentenarten:Artikel
Level:hoch