Validity of the Quarq cycling power meter

(Validität des Quarq-Leistungsmesssystems für Fahrräder)

Technological advancements have led to the development of various devices designed to monitor training loads and athletic performance. Power meters, particularly in cycling, allow for the precise quantification of power output, which is crucial for managing training loads and evaluating performance improvements. This study evaluates the validity of the Quarq D-Zero power meter for measuring cycling power output by comparing it with two previously validated devices—the Favero Assioma Duo (FAD) and the Hammer Saris H3 (H3)—noting that, although it shares the same measurement location as the SRM (the gold standard), it has not been directly validated against it. Thirty-one trained male cyclists participated in this study, undergoing tests across various power outputs (100-500 W) and three 10-s sprint efforts. The protocol incorporated different cadences (70, 85, and 100 revolutions per minute), randomized in order, and two cycling positions (seated and standing). Significant differences (p < 0.05) in power readings were observed among the three power meters, except during sprint efforts. However, pairwise comparisons revealed no significant differences (p > 0.05) between the FAD and Quarq power meters, except for the 500 W block. Strong to very strong correlations were observed between the FAD and Quarq power meters (r > 0.883, ICC > 0.879). The coefficient of variation (CV) between the FAD and Quarq devices ranged from 0.62% to 4.89%, and from 0.39% to 6.59% between the H3 and Quarq power meters. In conclusion, the Quarq power meter, integrated into the spider of the bicycle`s bottom bracket, provides valid power output measurements in cycling.
© Copyright 2025 Sensors. Alle Rechte vorbehalten.

Bibliographische Detailangaben
Schlagworte:
Notationen:Naturwissenschaften und Technik Ausdauersportarten
Tagging:Validität Labortest
Veröffentlicht in:Sensors
Sprache:Englisch
Veröffentlicht: 2025
Online-Zugang:https://doi.org/10.3390/s25092717
Jahrgang:25
Heft:8
Seiten:2717
Dokumentenarten:Artikel
Level:hoch