Estimation of LT with dynamic transfer function models with commercial HR and power sensor data
(Schätzung von LT mit dynamischen Übertragungsfunktionsmodellen mit kommerziellen HR- und Leistungssensordaten)
The anaerobic threshold (LT) serves as a pivotal marker in cycling training but its regular monitoring is hindered by cost and invasiveness. This study explores a modelling approach for LT estimation using heart rate (HR) and power data collected from wearable technology. Twenty-four cyclists underwent incremental tests while wearing various commercial sensors. A discrete-time transfer function method was employed for modelling, with time-variant parameter (TVP) models showing promising accuracy (average error: 4%) in LT estimation. The adaptability of TVP models to capture HR dynamics contributed to their efficacy. This modelling technique offers a potential alternative for routine LT monitoring, leveraging widely used wearable sensors in cycling. Further validation and adaptation to field data are warranted.
© Copyright 2024 Journal of Science and Cycling. Cycling Research Center. Alle Rechte vorbehalten.
| Schlagworte: | |
|---|---|
| Notationen: | Ausdauersportarten Biowissenschaften und Sportmedizin |
| Tagging: | Genauigkeit Monitoring |
| Veröffentlicht in: | Journal of Science and Cycling |
| Sprache: | Englisch |
| Veröffentlicht: |
2024
|
| Online-Zugang: | https://www.jsc-journal.com/index.php/JSC/article/view/904 |
| Jahrgang: | 13 |
| Heft: | 2 |
| Seiten: | 13-15 |
| Dokumentenarten: | Artikel |
| Level: | hoch |