Towards personalised performance prediction in road cycling through machine learning

(Personalisierte Leistungsvorhersage im Straßenradsport durch maschinelles Lernen)

We study the feasibility of applying machine learning to predict the performance of road cyclists using publicly available data. The performance is investigated by predicting the presence or absence in the top places of next year`s ranking based on a rider`s characteristics and results in the current and previous years. We apply several classification algorithms and obtain that random forest is the best-performing model. Our work is a first step towards creating personalised performance models in professional road cycling.
© Copyright 2023 13th World Congress of Performance Analysis of Sport and 13th International Symposium on Computer Science in Sport. IACSS&ISPAS 2022. Veröffentlicht von Springer. Alle Rechte vorbehalten.

Bibliographische Detailangaben
Schlagworte:
Notationen:Ausdauersportarten Naturwissenschaften und Technik
Tagging:maschinelles Lernen Algorithmus
Veröffentlicht in:13th World Congress of Performance Analysis of Sport and 13th International Symposium on Computer Science in Sport. IACSS&ISPAS 2022
Sprache:Englisch
Veröffentlicht: Cham Springer 2023
Online-Zugang:https://doi.org/10.1007/978-3-031-31772-9_20
Jahrgang:1448
Seiten:93-96
Dokumentenarten:Artikel
Level:hoch