A machine learning approach for road cycling race performance prediction

(Ein Ansatz für maschinelles Lernen zur Vorhersage der Leistung bei Straßenradrennen)

Predicting cycling race results has always been a task left to experts with a lot of domain knowledge. This is largely due to the fact that the outcomes of cycling races can be rather surprising and depend on an extensive set of parameters. Examples of such factors are, among others, the preparedness of a rider, the weather, the team strategy, and mechanical failure. However, we believe that due to the availability of historical data (e.g., race results, GPX files, and weather data) and the recent advances in machine learning, the prediction of the outcomes of cycling races becomes feasible. In this paper, we present a framework for predicting future race outcomes by using machine learning. We investigate the use of past performance race data as a good predictor. In particular, we focus on the Tour of Flanders as our proof-of-concept. We show, among others, that it is possible to predict the outcomes of a one-day race with similar or better accuracy than a human.
© Copyright 2020 Machine Learning and Data Mining for Sports Analytics. KU Leuven. Veröffentlicht von Springer. Alle Rechte vorbehalten.

Bibliographische Detailangaben
Schlagworte:
Notationen:Ausdauersportarten Naturwissenschaften und Technik
Tagging:maschinelles Lernen data mining
Veröffentlicht in:Machine Learning and Data Mining for Sports Analytics
Sprache:Englisch
Veröffentlicht: Cham Springer 2020
Online-Zugang:http://doi.org/10.1007/978-3-030-64912-8_9
Seiten:103-112
Dokumentenarten:Artikel
Level:hoch