Automatic detection and recocnition of athlete actions in diving video

(Automatisches Finden und Erkennen von Sportleraktionen in Wassersprung-Videos)

This paper presents a system for automatic detecting and recognizing complex individual actions in sports video to facilitate high-level content-based video indexing and retrieval. This is challenging due to the cluttered and dynamic background in sports video which makes object segmentation formidable. Another difficulty is to fully automatically and accurately detect desired actions from long video sequence. We propose three techniques to handle these challenges. Firstly, an efficient approach exploiting dominant motion and semantic color analysis is developed to detecting the highlight clips which contain athlete`s action from video sequences. Secondly, a robust object segmentation algorithm based on adaptive dynamic background construction is proposed to segment the athlete`s body from the clip. Finally, to recognize the segmented body shape sequences, the hidden markov models are slightly modified to make them suitable for noisy data processing. The proposed system for broadcast diving video analysis has achieved 96.6% detection precision; and 85% recognition accuracy for 13 kinds of diving actions.
© Copyright 2007 Lecture Notes in Computer Science. Springer. Veröffentlicht von Springer. Alle Rechte vorbehalten.

Bibliographische Detailangaben
Schlagworte:
Notationen:Trainingswissenschaft Kraft-Schnellkraft-Sportarten technische Sportarten
Tagging:Fernsehen
Veröffentlicht in:Lecture Notes in Computer Science
Sprache:Englisch
Veröffentlicht: Springer 2007
Schriftenreihe:Lecture Notes in Computer Science
Online-Zugang:https://doi.org/10.1007/978-3-540-69429-8_8
Jahrgang:4352
Seiten:73-82
Dokumentenarten:Artikel
Level:hoch