A hybrid framework to predict ski jumping forces by combining data-driven pose estimation and model-based force calculation

(Ein hybrider Ansatz zur Vorhersage der Kräfte beim Skispringen durch Kombination von datengesteuerter Lagebestimmung und modellbasierter Kraftberechnung)

The aim of this paper is to propose a hybrid framework that combines a data-driven pose estimation with model-based force calculation in order to predict the ski jumping force from a recorded motion video. A skeletal model consisting of five joints (ear, hip, knee, ankle, and toe) and four rigid segments (head/arm/trunk or HAT, thigh, shank, and foot) connecting each joint is developed. The joint forces are calculated from the dynamic equilibrium equations, which requires the time history of joint coordinates. They are estimated from a recorded motion video using a deep neural network for pose estimation trained with human motion data. Joint coordinates can be obtained by the proposed deep neural network directly from images of jumping motion without using any markers. The validity and usefulness of the proposed method are confirmed in lab experiments. Further, our method is practically applicable to the study in a real competition environment because it is not required to attach any sensor or marker to athletes.
© Copyright 2023 European Journal of Sport Science. Wiley. Alle Rechte vorbehalten.

Bibliographische Detailangaben
Schlagworte:
Notationen:Kraft-Schnellkraft-Sportarten Naturwissenschaften und Technik
Tagging:deep learning
Veröffentlicht in:European Journal of Sport Science
Sprache:Englisch
Veröffentlicht: 2023
Online-Zugang:https://doi.org/10.1080/17461391.2022.2028013
Jahrgang:23
Heft:2
Seiten:221-230
Dokumentenarten:Artikel
Level:hoch