Effect of ambient temperature on endurance performance while wearing cross-country skiing clothing

This study assessed the effects of exposure to cold (-14 and -9 °C), cool (-4 and 1 °C) and moderate warm (10 and 20 °C) environments on aerobic endurance performance-related variables: maximal oxygen consumption (VO2max), running time to exhaustion (TTE), running economy and running speed at lactate threshold (LT). Nine male endurance athletes wearing cross-country ski racing suit performed a standard running test at six ambient temperatures in a climatic chamber with a wind speed of 5 m s-1. The exercise protocol consisted of a 10-min warm-up period followed by four submaximal periods of 5 min at increasing intensities between 67 and 91 % of VO2max and finally a maximal test to exhaustion. During the time course mean skin temperature decreased significantly with reduced ambient temperatures whereas T re increased during all conditions. T re was lower at -14 °C than at -9 and 20 °C. Running economy was significantly reduced in warm compared to cool environments and was also reduced at 20 °C compared to -9 °C. Running speed at LT was significantly higher at -4 °C than at -9, 10 and 20 °C. TTE was significantly longer at -4 and 1 °C than at -14, 10 and 20 °C. No significant differences in VO2max were found between the various ambient conditions. The optimal aerobic endurance performance wearing a cross-country ski racing suit was found to be -4 and 1 °C, while performance was reduced under moderate warm (10 and 20 °C) and cold (-14 and -9 °C) ambient conditions.
© Copyright 2012 European Journal of Applied Physiology. Springer. All rights reserved.

Bibliographic Details
Subjects:
Notations:endurance sports technical and natural sciences
Published in:European Journal of Applied Physiology
Language:English
Published: 2012
Online Access:http://doi.org/10.1007/s00421-012-2373-1
Volume:112
Issue:12
Pages:3939-3947
Document types:article
Level:advanced