Object detection using synthesized data
(Objekterkennung mit synthetisierten Daten)
Successful object detection, using CNN, requires lots of well-anno-tated training data which is currently not available for action recognition in hand-ball domain.Augmenting real-world image dataset with synthesized images is not a novel ap-proach, but the effectiveness of the creation of such a dataset and the quantities of generated images required to improve the detection can be.Starting with relatively small training dataset, by combining traditional 3D mod-eling with proceduralism and optimizing generator-annotator pipeline to keep rendering and annotating time under 3 FPS, we achieved 3x better detection re-sults, using YOLO, while only tripling the training dataset.
© Copyright 2019 ICT Innovations 2019. Veröffentlicht von Association for Information and Communication Technologies. Alle Rechte vorbehalten.
| Schlagworte: | |
|---|---|
| Notationen: | Naturwissenschaften und Technik Spielsportarten |
| Veröffentlicht in: | ICT Innovations 2019 |
| Sprache: | Englisch |
| Veröffentlicht: |
Skopje
Association for Information and Communication Technologies
2019
|
| Online-Zugang: | https://proceedings.ictinnovations.org/2019/paper/517/object-detection-using-synthesized-data |
| Seiten: | 110-124 |
| Dokumentenarten: | elektronische Publikation |
| Level: | hoch |