Deep decision trees for discriminative dictionary learning with adversarial multi-agent trajectories

(Tiefe Entscheidungsbäume für differenziertes Dictionary Learning mit adversen Multi-Agenten-Trajektorien)

With the explosion in the availability of spatio-temporal tracking data in modern sports, there is an enormous opportunity to better analyse, learn and predict important events in adversarial group environments. In this paper, we propose a deep decision tree architecture for discriminative dictionary learning from adversarial multi-agent trajectories. We first build up a hierarchy for the tree structure by adding each layer and performing feature weight based clustering in the forward pass. We then fine tune the player role weights using back propagation. The hierarchical architecture ensures the interpretability and the integrity of the group representation. The resulting architecture is a decision tree, with leaf-nodes capturing a dictionary of multi-agent group interactions. Due to the ample volume of data available, we focus on soccer tracking data, although our approach can be used in any adversarial multi-agent domain. We present applications of proposed method for simulating soccer games as well as evaluating and quantifying team strategies.
© Copyright 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE. Veröffentlicht von IEEE. Alle Rechte vorbehalten.

Bibliographische Detailangaben
Schlagworte:
Notationen:Spielsportarten Naturwissenschaften und Technik
Tagging:Datenanalyse
Veröffentlicht in:IEEE/CVF Conference on Computer Vision and Pattern Recognition
Sprache:Englisch
Veröffentlicht: Salt Lake City IEEE 2018
Seiten:1804-1812
Dokumentenarten:Artikel
Level:hoch