Player valuation in European football
(Spielerbewertung im europäischen Fußball)
As the success of a team depends on the performance of individual players, the valuation of player performance has become an important research topic. In this paper, we compare and contrast which attributes and skills best predict the success of individual players in their positions in five European top football leagues. Further, we evaluate different machine learning algorithms regarding prediction performance. Our results highlight features distinguishing top-tier players and show that prediction performance is higher for forwards than for other positions, suggesting that equally good prediction of defensive players may require more advanced metrics.
© Copyright 2019 Machine Learning and Data Mining for Sports Analytics. MLSA 2018. Lecture Notes in Computer Science, vol 11330. Veröffentlicht von Springer. Alle Rechte vorbehalten.
| Schlagworte: | |
|---|---|
| Notationen: | Naturwissenschaften und Technik Spielsportarten |
| Tagging: | data mining Algorithmus maschinelles Lernen |
| Veröffentlicht in: | Machine Learning and Data Mining for Sports Analytics. MLSA 2018. Lecture Notes in Computer Science, vol 11330 |
| Sprache: | Englisch |
| Veröffentlicht: |
Cham
Springer
2019
|
| Online-Zugang: | https://doi.org/10.1007/978-3-030-17274-9_4 |
| Seiten: | 42-54 |
| Dokumentenarten: | Artikel |
| Level: | hoch |