Measuring football players` on-the-ball contributions from passes during games
(Messung der Leistung am Ball von Fußballspielern nach Pässen im Verlauf von Spielen)
Several performance metrics for quantifying the in-game performances of individual football players have been proposed in recent years. Although the majority of the on-the-ball actions during games constitutes of passes, many of the currently available metrics focus on measuring the quality of shots only. To help bridge this gap, we propose a novel approach to measure players` on-the-ball contributions from passes during games. Our proposed approach measures the expected impact of each pass on the scoreline.
© Copyright 2019 Machine Learning and Data Mining for Sports Analytics. MLSA 2018. Lecture Notes in Computer Science, vol 11330. Veröffentlicht von Springer. Alle Rechte vorbehalten.
| Schlagworte: | |
|---|---|
| Notationen: | Naturwissenschaften und Technik |
| Tagging: | data mining |
| Veröffentlicht in: | Machine Learning and Data Mining for Sports Analytics. MLSA 2018. Lecture Notes in Computer Science, vol 11330 |
| Sprache: | Englisch |
| Veröffentlicht: |
Cham
Springer
2019
|
| Online-Zugang: | https://doi.org/10.1007/978-3-030-17274-9_1 |
| Seiten: | 3-15 |
| Dokumentenarten: | Artikel |
| Level: | hoch |