Measuring football players` on-the-ball contributions from passes during games
Several performance metrics for quantifying the in-game performances of individual football players have been proposed in recent years. Although the majority of the on-the-ball actions during games constitutes of passes, many of the currently available metrics focus on measuring the quality of shots only. To help bridge this gap, we propose a novel approach to measure players` on-the-ball contributions from passes during games. Our proposed approach measures the expected impact of each pass on the scoreline.
© Copyright 2019 Machine Learning and Data Mining for Sports Analytics. MLSA 2018. Lecture Notes in Computer Science, vol 11330. Published by Springer. All rights reserved.
| Subjects: | |
|---|---|
| Notations: | technical and natural sciences |
| Tagging: | data mining |
| Published in: | Machine Learning and Data Mining for Sports Analytics. MLSA 2018. Lecture Notes in Computer Science, vol 11330 |
| Language: | English |
| Published: |
Cham
Springer
2019
|
| Online Access: | https://doi.org/10.1007/978-3-030-17274-9_1 |
| Pages: | 3-15 |
| Document types: | article |
| Level: | advanced |