4050959
Finding similar movements in positional data streams
(Finden ähnlicher Bewegungen in Positionsdatenströmen)
In this paper, we study the problem of efficiently finding similar movements in positional data streams, given a query trajectory. Our approach is based on a translation-, rotation-, and scale-invariant representation of movements. Nearneighbours given a query trajectory are then efficiently computed using dynamic time warping and locality sensitive hashing. Empirically, we show the efficiency and accuracy of our approach on positional data streams recorded from a real soccer game.
© Copyright 2013 Machine Learning and Data Mining for Sports Analytics ECML/PKDD 2013 workshop. Veröffentlicht von Department of Computer Science, KU Leuven. Alle Rechte vorbehalten.
| Schlagworte: | |
|---|---|
| Notationen: | Naturwissenschaften und Technik Trainingswissenschaft Spielsportarten |
| Tagging: | data mining |
| Veröffentlicht in: | Machine Learning and Data Mining for Sports Analytics ECML/PKDD 2013 workshop |
| Sprache: | Englisch |
| Veröffentlicht: |
Leuven
Department of Computer Science, KU Leuven
2013
|
| Online-Zugang: | https://dtai.cs.kuleuven.be/events/MLSA13/papers/mlsa13_submission_13.pdf |
| Dokumentenarten: | Artikel |
| Level: | hoch |