Large-scale analysis of soccer matches using spatiotemporal tracking data

(Großumfängliche Analyse von Fußballspielen mithilfe von räumlich-zeitlichen Trackingdaten)

Although the collection of player and ball tracking data is fast becoming the norm in professional sports, large-scale mining of such spatiotemporal data has yet to surface. In this paper, given an entire season's worth of player and ball tracking data from a professional soccer league (˜400,000,000 data points), we present a method which can conduct both individual player and team analysis. Due to the dynamic, continuous and multi-player nature of team sports like soccer, a major issue is aligning player positions over time. We present a "role-based" representation that dynamically updates each player's relative role at each frame and demonstrate how this captures the short-term context to enable both individual player and team analysis. We discover role directly from data by utilizing a minimum entropy data partitioning method and show how this can be used to accurately detect and visualize formations, as well as analyze individual player behavior.
© Copyright 2014 IEEE International Conference on Data Mining (ICDM). Veröffentlicht von IEEE. Alle Rechte vorbehalten.

Bibliographische Detailangaben
Schlagworte:
Notationen:Spielsportarten Naturwissenschaften und Technik
Tagging:Big Data
Veröffentlicht in:IEEE International Conference on Data Mining (ICDM)
Sprache:Englisch
Veröffentlicht: Shenzhen IEEE 2014
Online-Zugang:http://doi.org/10.1109/ICDM.2014.133
Seiten:725-730
Dokumentenarten:Kongressband, Tagungsbericht
Level:hoch