The player kernel: Learning team strengths based on implicit player contributions

(Der Spielerkern: Mannschaftsstärke basierend auf impliziten Spielerbeiträgen erlernen)

In this work, we draw attention to a connection between skill-based models of game outcomes and Gaussian process classification models. The Gaussian process perspective enables a) a principled way of dealing with uncertainty and b) rich models, specified through kernel functions. Using this connection, we tackle the problem of predicting outcomes of football matches between national teams. We develop a player kernel that relates any two football matches through the players lined up on the field. This makes it possible to share knowledge gained from observing matches between clubs (available in large quantities) and matches between national teams (available only in limited quantities). We evaluate our approach on the Euro 2008, 2012 and 2016 final tournaments.
© Copyright 2016 Machine Learning and Data Mining for Sports Analytics ECML/PKDD 2016 workshop. Veröffentlicht von Department of Computer Science, KU Leuven. Alle Rechte vorbehalten.

Bibliographische Detailangaben
Schlagworte:
Notationen:Naturwissenschaften und Technik
Tagging:data mining
Veröffentlicht in:Machine Learning and Data Mining for Sports Analytics ECML/PKDD 2016 workshop
Sprache:Englisch
Veröffentlicht: Leuven Department of Computer Science, KU Leuven 2016
Online-Zugang:https://dtai.cs.kuleuven.be/events/MLSA16/papers/paper_17.pdf
Seiten:1-7
Dokumentenarten:Artikel
Level:hoch