Learning to score figure skating sport videos

(Die Bewertung von Eiskunstlauf-Sportvideos lernen)

This paper targets at learning to score the figure skating sports videos. To address this task, we propose a deep architecture that includes two complementary components, i.e., Self-Attentive LSTM and Multi-scale Convolutional Skip LSTM. These two components can efficiently learn the local and global sequential information in each video. Furthermore, we present a large-scale figure skating sports video dataset -- FisV dataset. This dataset includes 500 figure skating videos with the average length of 2 minutes and 50 seconds. Each video is annotated by two scores of nine different referees, i.e., Total Element Score(TES) and Total Program Component Score (PCS). Our proposed model is validated on FisV and MIT-skate datasets. The experimental results show the effectiveness of our models in learning to score the figure skating videos.
© Copyright 2018 arXiv e-print repository. Alle Rechte vorbehalten.

Bibliographische Detailangaben
Schlagworte:
Notationen:technische Sportarten Ausbildung und Forschung
Veröffentlicht in:arXiv e-print repository
Sprache:Englisch
Veröffentlicht: 2018
Online-Zugang:https://arxiv.org/abs/1802.02774
Jahrgang:30
Heft:12
Seiten:4578-4590
Dokumentenarten:Artikel
Level:hoch