A machine intelligence approach to virtual ballet training
(Ein KI-Ansatz für das virtuelle Balletttraining)
This article presents a framework for real-time analysis and visualization of ballet dance movements performed within a Cave Virtual Reality Environment (CAVE). A Kinect sensor captures and extracts dance-based movement features, from which a topology preserved "posture space" is constructed using a spherical self-organizing map (SSOM). Recordings of dance movements are parsed into gestural elements by projection onto the SSOM to form unique trajectories in posture space. Dependencies between postures in a trajectory are modeled using a Markovian empirical transition matrix, which is then used to recognize attempted movements. This allows for quantitative assessment and feedback of a student's performance, delivered using concurrent, localized visualizations together with a performance score based on incremental dynamic time warping (IDTW).
© Copyright 2015 IEEE MultiMedia. IEEE Institute of Electrical and Electronics Engineers. Alle Rechte vorbehalten.
| Schlagworte: | |
|---|---|
| Notationen: | Naturwissenschaften und Technik technische Sportarten |
| Tagging: | Kinect virtuelle Realität künstliche Intelligenz |
| Veröffentlicht in: | IEEE MultiMedia |
| Sprache: | Englisch |
| Veröffentlicht: |
2015
|
| Online-Zugang: | https://doi.org/10.1109/MMUL.2015.73 |
| Jahrgang: | 22 |
| Heft: | 4 |
| Seiten: | 80-92 |
| Dokumentenarten: | Artikel |
| Level: | hoch |