Predicting the personal-best times of speed skaters using case-based reasoning
(Vorhersage der persönlichen Bestzeiten von Eisschnellläufern mittels fallbasiertem Schließen)
Speed skating is a form of ice skating in which the skaters race each other over a variety of standardised distances. Races take place on specialised ice-rinks and the type of track and ice conditions can have a significant impact on race-times. As race distances increase, pacing also plays an important role. In this paper we seek to extend recent work on the application of case-based reasoning to marathon-time prediction by predicting race-times for speed skaters. In particular, we propose and evaluate a number of case-based reasoning variants based on different case and feature representations to generate track-specific race predictions. We show it is possible to improve upon state-of-the-art prediction accuracy by harnessing richer case representations using shorter races and track-adjusted finish and lap-times.
© Copyright 2020 Case-Based Reasoning Research and Development. ICCBR 2020. Veröffentlicht von Springer. Alle Rechte vorbehalten.
| Schlagworte: | |
|---|---|
| Notationen: | Ausdauersportarten |
| Tagging: | maschinelles Lernen |
| Veröffentlicht in: | Case-Based Reasoning Research and Development. ICCBR 2020 |
| Sprache: | Englisch |
| Veröffentlicht: |
Cham
Springer
2020
|
| Schriftenreihe: | Lecture Notes in Computer Science, 12311 |
| Online-Zugang: | https://doi.org/10.1007/978-3-030-58342-2_8 |
| Seiten: | 112-126 |
| Dokumentenarten: | Buch |
| Level: | hoch |