Predicting the personal-best times of speed skaters using case-based reasoning

(Vorhersage der persönlichen Bestzeiten von Eisschnellläufern mittels fallbasiertem Schließen)

Speed skating is a form of ice skating in which the skaters race each other over a variety of standardised distances. Races take place on specialised ice-rinks and the type of track and ice conditions can have a significant impact on race-times. As race distances increase, pacing also plays an important role. In this paper we seek to extend recent work on the application of case-based reasoning to marathon-time prediction by predicting race-times for speed skaters. In particular, we propose and evaluate a number of case-based reasoning variants based on different case and feature representations to generate track-specific race predictions. We show it is possible to improve upon state-of-the-art prediction accuracy by harnessing richer case representations using shorter races and track-adjusted finish and lap-times.
© Copyright 2020 Case-Based Reasoning Research and Development. ICCBR 2020. Veröffentlicht von Springer. Alle Rechte vorbehalten.

Bibliographische Detailangaben
Schlagworte:
Notationen:Ausdauersportarten
Tagging:maschinelles Lernen
Veröffentlicht in:Case-Based Reasoning Research and Development. ICCBR 2020
Sprache:Englisch
Veröffentlicht: Cham Springer 2020
Schriftenreihe:Lecture Notes in Computer Science, 12311
Online-Zugang:https://doi.org/10.1007/978-3-030-58342-2_8
Seiten:112-126
Dokumentenarten:Buch
Level:hoch