Learning fine-grained spatial models for dynamic sports play prediction
(Lernende detailgenaue räumliche Modelle für die Vorhersage dynamischer Spielverläufe)
We consider the problem of learning predictive models for in-game sports play prediction. Focusing on basketball, we develop models for anticipating near-future events given the current game state.We employ a latent factor modeling approach, which leads to a compact data representation that enables efficient prediction given raw spatiotemporal tracking data. We validate our approach using tracking data from the 2012-2013 NBA season, and show that our model can make accurate in-game predictions. We provide a detailed inspection of our learned factors, and show that our model is interpretable and corresponds to known intuitions of basketball gameplay.
© Copyright 2014 IEEE International Conference on Data Mining (ICDM). Veröffentlicht von IEEE. Alle Rechte vorbehalten.
| Schlagworte: | |
|---|---|
| Notationen: | Spielsportarten Naturwissenschaften und Technik |
| Veröffentlicht in: | IEEE International Conference on Data Mining (ICDM) |
| Sprache: | Englisch |
| Veröffentlicht: |
Shenzhen
IEEE
2014
|
| Online-Zugang: | http://doi.org/10.1109/ICDM.2014.106 |
| Seiten: | 670-679 |
| Dokumentenarten: | Kongressband, Tagungsbericht |
| Level: | hoch |