Object detection using synthesized data

(Objekterkennung mit synthetisierten Daten)

Successful object detection, using CNN, requires lots of well-anno-tated training data which is currently not available for action recognition in hand-ball domain.Augmenting real-world image dataset with synthesized images is not a novel ap-proach, but the effectiveness of the creation of such a dataset and the quantities of generated images required to improve the detection can be.Starting with relatively small training dataset, by combining traditional 3D mod-eling with proceduralism and optimizing generator-annotator pipeline to keep rendering and annotating time under 3 FPS, we achieved 3x better detection re-sults, using YOLO, while only tripling the training dataset.
© Copyright 2019 ICT Innovations 2019. Veröffentlicht von Association for Information and Communication Technologies. Alle Rechte vorbehalten.

Bibliographische Detailangaben
Schlagworte:
Notationen:Naturwissenschaften und Technik Spielsportarten
Veröffentlicht in:ICT Innovations 2019
Sprache:Englisch
Veröffentlicht: Skopje Association for Information and Communication Technologies 2019
Online-Zugang:https://proceedings.ictinnovations.org/2019/paper/517/object-detection-using-synthesized-data
Seiten:110-124
Dokumentenarten:elektronische Publikation
Level:hoch