A stroke of genius: Predicting the next move in badminton

(Ein Geniestreich: Den nächsten Schritt im Badminton vorhersagen)

This paper presents a transformer encoder-decoder model for predicting future badminton strokes based on previous rally actions. The model uses court position skeleton poses and player-specific embeddings to learn stroke and player-specific latent representations in a spatiotemporal encoder module. The representations are then used to condition the subsequent strokes in a decoder module through rally-aware fusion blocks which provide additional relevant strategic and technical considerations to make more informed predictions. RallyTemPose shows improved forecasting accuracy compared to traditional sequential methods on two real-world badminton datasets. The performance boost can also be attributed to the inclusion of improved stroke embeddings extracted from the latent representation of a pre-trained large-language model subjected to detailed text descriptions of stroke descriptions. In the discussion the latent representations learned by the encoder module show useful properties regarding player analysis and comparisons.
© Copyright 2024 Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops. Veröffentlicht von IEEE. Alle Rechte vorbehalten.

Bibliographische Detailangaben
Schlagworte:
Notationen:Spielsportarten Naturwissenschaften und Technik
Veröffentlicht in:Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops
Sprache:Englisch
Veröffentlicht: Piscataway, NJ IEEE 2024
Online-Zugang:https://openaccess.thecvf.com/content/CVPR2024W/CVsports/html/Ibh_A_Stroke_of_Genius_Predicting_the_Next_Move_in_Badminton_CVPRW_2024_paper.html
Seiten:3376-3385
Dokumentenarten:Artikel
Level:hoch