Gorges, T, Davidson, P, Boeschen, M, Hotho, A & Merz, C. (2024). IMU airtime detection in snowboard halfpipe: U-net deep learning approach outperforms traditional threshold algorithms. Sensors, 24 (21), 6773. Zugriff am 22.01.2025 unter https://doi.org/10.3390/s24216773
APA (7th ed.) CitationGorges, T., Davidson, P., Boeschen, M., Hotho, A., & Merz, C. (2024). IMU airtime detection in snowboard halfpipe: U-net deep learning approach outperforms traditional threshold algorithms. Sensors, 24(21), 6773.
Chicago Style (17th ed.) CitationGorges, T., P. Davidson, M. Boeschen, A. Hotho, and C. Merz. "IMU Airtime Detection in Snowboard Halfpipe: U-net Deep Learning Approach Outperforms Traditional Threshold Algorithms." Sensors 24, no. 21 (2024): 6773.
MLA (9th ed.) CitationGorges, T., et al. "IMU Airtime Detection in Snowboard Halfpipe: U-net Deep Learning Approach Outperforms Traditional Threshold Algorithms." Sensors, vol. 24, no. 21, 2024, p. 6773.