Gorges, T, Davidson, P, Boeschen, M, Hotho, A & Merz, C. (2024). IMU airtime detection in snowboard halfpipe: U-net deep learning approach outperforms traditional threshold algorithms. Sensors, 24 (21), 6773. Zugriff am 22.01.2025 unter https://doi.org/10.3390/s24216773
APA-Zitierstil (7. Ausg.)Gorges, T., Davidson, P., Boeschen, M., Hotho, A., & Merz, C. (2024). IMU airtime detection in snowboard halfpipe: U-net deep learning approach outperforms traditional threshold algorithms. Sensors, 24(21), 6773.
Chicago-Zitierstil (17. Ausg.)Gorges, T., P. Davidson, M. Boeschen, A. Hotho, und C. Merz. "IMU Airtime Detection in Snowboard Halfpipe: U-net Deep Learning Approach Outperforms Traditional Threshold Algorithms." Sensors 24, no. 21 (2024): 6773.
MLA-Zitierstil (9. Ausg.)Gorges, T., et al. "IMU Airtime Detection in Snowboard Halfpipe: U-net Deep Learning Approach Outperforms Traditional Threshold Algorithms." Sensors, vol. 24, no. 21, 2024, p. 6773.