Using the geometric phase to optimise planar somersaults

(Nutzung der geometrischen Phase zur Optimierung von Saltos)

We derive the equations of motion for the planar somersault, which consist of two additive terms. The first is the dynamic phase that is proportional to the angular momentum, and the second is the geometric phase that is independent of angular momentum and depends solely on the details of the shape change. Next, we import digitised footage of an elite athlete performing 3.5 forward somersaults off the 3m springboard, and use the data to validate our model. We show that reversing and reordering certain sections of the digitised dive can maximise the geometric phase without affecting the dynamic phase, thereby increasing the overall rotation achieved. Finally, we propose a theoretical planar somersault consisting of four shape changing states, where the optimisation lies in finding the shape change strategy that maximises the overall rotation of the dive. This is achieved by balancing the rotational contributions from the dynamic and geometric phases, in which we show the geometric phase plays a small but important role in the optimisation process.
© Copyright 2018 Veröffentlicht von Cornell University. Alle Rechte vorbehalten.

Bibliographische Detailangaben
Schlagworte:
Notationen:Trainingswissenschaft technische Sportarten
Sprache:Englisch
Veröffentlicht: Ithaca Cornell University 2018
Online-Zugang:https://arxiv.org/abs/1801.07828v1
Seiten:21
Dokumentenarten:elektronische Publikation
Level:hoch