Suchergebnisse - Intelligence
-
1
The modern goalkeeper in elite youth football: A quantitative analysis of U17 matches (Der moderne Torwart im Spitzenjugendfußball: Eine quantitative Analyse von U17-Spielen)
Vladimir, B.Veröffentlicht in Science, Movement & Health (2025)“… The modern goalkeeper plays a vital role in both phases of play, emphasizing the need for technical proficiency, game intelligence, and decision-making under pressure in elite youth football. …”
-
2
Emotional intelligence in the structure of self-control among junior athletes (Emotionale Intelligenz in der Struktur der Selbstkontrolle bei Nachwuchsathleten)
Popovych, I., Danko, D., Yakovleva, S., Haponenko, L., Shcherbyna, O., Kryzhanovskyi, O., Hoian, I.Veröffentlicht in Journal of Physical Education and Sport (2025)“… The aim of this study is to empirically investigate and theoretically substantiate the role of emotional intelligence (EQ) within the self-control structure of junior athletes. …”
-
3
Characteristics of the semantic content of the concept of "game giftedness" (using the example of football) (Merkmale des semantischen Inhalts des Konzepts der "Spielbegabung" (am Beispiel des Fußballs))
Rizvanova A. A.Veröffentlicht in Theory and Practice of Physical Culture (2025)“… Gaming talent is an original systemically developing model of readiness for gaming activity, expressed in the totality and qualitative uniqueness of innate physical (speed of action), psychophysiological (perception, sensorimotor reactions, gaming intelligence) and acquired social (propensity for gaming interaction, emotional and social intelligence) qualities, which make it possible to compensate for the insufficiency of some functional qualities due to the priority of the evolution of others. …”
-
4
Will artificial intelligence solve the riddle of athlete development?... (Wird künstliche Intelligenz das Rätsel der Athletenentwicklung lösen? Ein kritischer Überblick über den Einsatz von KI bei der Identifizierung, Auswahl und Entwicklung von Athleten)
Baker, J., Cattle, A., McAuley, A., Kelly, A., Johnston, K.Veröffentlicht in Psychology of Sport and Exercise (2025)“… Introduction The last decade has seen a rapid increase in the use of artificial intelligence (AI) approaches such as machine learning and deep learning in the sport sciences. …”
-
5
Selection odds in talent selection among female handball players by relative age, biological maturity, body size, and body composition (Selektionswahrscheinlichkeiten bei der Talentauswahl von Handballspielerinnen nach relativem Alter, biologischer Reife, Körpergröße und Körperzusammensetzung)
Tróznai, Zs., Utczás, K., Pápai, J., Pálinkás, G., Szabó, T., Petridis, L.Veröffentlicht in 29th Annual Congress of the European College of Sport Science, 2-5 July 2024, Book of Abstracts (2024)“… The developmental status was the strongest predictor in the selection, but it seems that the impact of relative age and maturation is not limited to body size and muscular development, but it may expand to other important aspects in handball, such as technical competence or game intelligence. …”
-
6
Developing self-awareness and emotional intelligence in adolescent soccer: a community outreach pilot program (Entwicklung von Selbstwahrnehmung und emotionaler Intelligenz im Jugendfußball: ein Pilotprogramm für die Gemeindearbeit)
Gomez Souffront, S., Everett, E. R., Kostrna, J.Veröffentlicht in Journal of Clinical Sport Psychology (2025)“… The intervention and efficacy of this study support applied practitioners` integration of biofeedback and psychological skills training to improve adolescents` self-awareness, emotional intelligence, and decision making. …”
-
7
Exploring gender-specific correlations between nutritional intake, body composition, psychological skills, and performance metrics in young taekwondo athletes (Untersuchung geschlechtsspezifischer Zusammenhänge zwischen Nahrungsaufnahme, Körperzusammensetzung, psychologischen Fähigkeiten und Leistungsmetriken bei jungen Taekwondo-Athleten)
Samanipour, M. H., Azizi, M., Salehian, O., Ceylan, H. I., Mielgo-Ayuso, J. F., Coso, J. D., Muntean, R. I., Bragazzi, N. L., Herrera-Valenzuela, T.Veröffentlicht in Nutrients (2025)“… There were no gender differences in any psychological attributes associated with emotional intelligence, sport success perception, and mental toughness. …”
-
8
Analytics auf dem Eis: Wie Daten die Spielanalyse im Eishockey bereichern
Schürmann, R., Bandemer, R., Madauß, L., Wohak, O., Schwarzenbrunner, K., Danielsmeier, C.Veröffentlicht in Leistungssport (2025)“… Die Menge und Präzision erhobener Daten sowie die Möglichkeit, diese intelligent zu verknüpfen und auszuwerten, haben sich spätestens mit dem Aufkommen großer Speicherkapazitäten und Künstlicher Intelligenz um Größenordnungen erhöht. …”
-
9
Development and evaluation of an AI-based exergame training system for ice-hockey players: a randomized controlled trial (Entwicklung und Bewertung eines KI-basierten Exergame-Trainingssystems für Eishockeyspieler: Eine randomisierte kontrollierte Studie)
Sieber, N., Walser, S., Weber, T., Gubler, R., Badertscher, H., Eggenberger, P.Veröffentlicht in Current Issues in Sport Science (2025)“… Methods: We developed the novel exergame training system using four synchronized cameras for video-based motion tracking of the athlete, in combination with two video projectors showing the game tasks on a wall-mounted screen and on the floor in front of the athlete. Artificial intelligence (i.e., machine learning) was applied to train and validate algorithms to accurately detect joint positions of the human body based on large open-source training and validation data sets. …”
-
10
Identifying key factors for predicting the age at peak height velocity in preadolescent team sports athletes using explainable machine learning (Identifizierung zentraler Faktoren zur Vorhersage des Alters beim Spitzenwachstumsschub bei präadoleszenten Mannschaftssportlern mithilfe erklärbarer maschineller Lernverfahren)
Retzepis, N.-O., Avloniti, A., Kokkotis, C., Protopapa, M., Stampoulis, T., Gkachtsou, A., Pantazis, D., Balampanos, D., Smilios, I., Chatzinikolaou, A.Veröffentlicht in Sports (2024)“… Hence, this study aims to deepen the understanding of the factors that affect maturity in 11-year-old Team Sports Athletes by utilizing explainable artificial intelligence (XAI) models. We utilized three established machine learning (ML) classifiers and applied the Sequential Forward Feature Selection (SFFS) algorithm to each. …”
-
11
The role of generic cognitive skills: an empirical investigation into the association between generic and sport-specific cognitive skills and playing level in youth football (Die Rolle allgemeiner kognitiver Fähigkeiten: eine empirische Untersuchung des Zusammenhangs zwischen allgemeinen und sportspezifischen kognitiven Fähigkeiten und dem Spielniveau im Jugendfußball)
Reinhard, M. L., Mann, D. L., Höner, O.Veröffentlicht in Journal of Science and Medicine in Sport (2025)“… Results The generic Football Intelligence score showed a small but significant association with football-specific decision-making when controlling for age (p=0.006). …”
-
12
Multistream adaptive attention-enhanced graph convolutional networks for youth fencing footwork training (Adaptive, aufmerksamkeitsverstärkte Graph-Konvolutionsnetze für das Training der Fußarbeit im Jugendfechten (Multistream))
Ren, Y., Sang, H., Huang, S., Qin, X.Veröffentlicht in Pediatric Exercise Science (2024)“… This paper aims to use artificial intelligence technology to reduce ineffective exercises and alleviate the training burden. …”
-
13
Analyzing and predicting the career trajectory of male elite junior tennis players: A machine learning approach (Analyse und Vorhersage der Karriereentwicklung männlicher Elite-Juniorentennisspieler: Ein Ansatz des maschinellen Lernens)
Bozdech, M., Zhánel, J.Veröffentlicht in 10th International scientific conference on kinesiology. Book of abstracts (2024)“… The cleaned dataset (n = 2847) underwent statistical analyses, including Chi-square tests, Cramer`s V, Bayesian approaches, and Multinomial Logistic Regression (MLR). Artificial Intelligence (AI) models, using supervised learning classification, were applied. …”
-
14
The role of physiological testing for athlete development in sport: The elite athlete perspective (Die Rolle physiologischer Tests für die Entwicklung von Athleten im Sport: Die Perspektive des Spitzensportlers)
Söderström, T., Sandlund, S., Westerlund, R., Tervo, T.Veröffentlicht in International Review for the Sociology of Sport (2024)“… The physiological testing practice articulates action intelligibility through rules and structures which emphasizes tests as isolated quantified indicators of physical status. …”
-
15
Anthropometry, physical fitness, sport-specific performance and the prediction of performance level in young canoe sprint athletes (Anthropometrie, körperliche Fitness, sportartspezifische Leistung und die Vorhersage des Leistungsniveaus bei jungen Kanusprintsportlern)
Saal, C., Helm, N., Prieske, O.Veröffentlicht in Proceedings of the 9th International Performance Analysis Workshop and Conference & 5th IACSS Conference. PACSS 2021. Advances in Intelligent Systems and Computing, vol 1426 (2022)Zeitschrift: “… PACSS 2021. Advances in Intelligent Systems and Computing, vol 1426 …”
-
16
Sport-specific tasks and game performance in relation to relative age and biological maturity in talent selection among adolescent female handball players (Sportartspezifische Aufgaben und Spielleistung im Zusammenhang mit dem relativen Alter und der biologischen Reife bei der Talentauswahl von jugendlichen Handballspielerinnen)
Tróznai, Zs., Utczás, K., Pálinkás, G., Juhász, I., Szabó, T., Petridis, L.Veröffentlicht in 28th Annual Congress of the European College of Sport Science, 4-7 July 2023, Paris, France (2023)“… The significant differences in in-game performance scores between the relative age groups can be explained by the assumption that relatively older players have more training and competition possibilities developing in this way their game intelligence. In summary, it is not the relative age itself that affects the selection, but mostly advanced biological maturation of presumably above one-year differences between the players. …”
-
17
Validity of a wearable sensor for stroke detection in youth tennis players (Validität eines tragbaren Sensors zur Schlagerkennung bei jugendlichen Tennisspielern)
Cui, Y., Zhou, Y., Jozef, B., Shen, Y.Veröffentlicht in 28th Annual Congress of the European College of Sport Science, 4-7 July 2023, Paris, France (2023)“… The advancement of in micro-sensors and intelligent algorithms allow for the automatic and more tennis-specific quantification of the load, which enables the monitoring of multiple players in real-time. …”
-
18
The need for contextual intelligence in athletic training (Der Bedarf an kontextbezogener Intelligenz im Athletiktraining)
Kutz, M. R.Veröffentlicht in International Journal of Athletic Therapy & Training (2022)“… One such meta-skill is contextual intelligence. Contextual intelligence is the capacity to recognize the convergence of different variables and respond to the emerging context as it is developing. …”
-
19
Forecasting the competitive performance of young athletes based on artificial intelligence technology (Prognose der Wettkampfleistung junger Athleten auf der Grundlage der Technologie der künstlichen Intelligenz)
Nagovitsyn, R. S., Gibadullin, I. G., Batsina, O. N., Mokrushina, I. A.Veröffentlicht in Theory and Practice of Physical Culture (2023)“… Objective of the study was to develop a program for predicting the competitive performance of young athletes based on artificial intelligence technology. Methods and structure of the study. …”
-
20
The relationship between technical skills, perceived tactical skills and self-regulatory skills in youth elite tennis players (Die Beziehung zwischen technischen Fähigkeiten, wahrgenommenen taktischen Fähigkeiten und Selbstregulierungsfähigkeiten bei jugendlichen Elitetennisspielern)
Kolman, N.Veröffentlicht in 27th Annual Congress of the European College of Sport Science (ECSS), Sevilla, 30. Aug - 2. Sep 2022 (2022)“… METHODS: Using the Dutch Technical-Tactical Tennis Test (D4T), the Perceived Tactical Skills Scale in Tennis (PTSST) and the Self-Regulated Learning for Sport Practice (SRL-SP), this study aims to determine (i) whether there is a correlation between technical skills (i.e. ball speed, accuracy, percentage errors and spin rate) and perceived tactical skills, (ii) whether there is a correlation between technical skills in various tactical situations (offensive, defensive and neutral) and game situations (fixed and variable) and any of the four subscales of the PTSST (Anticipation and positioning, Game intelligence and adaptability, Decision-making and Recognizing game situations) (iii) which of the five domains of self-regulatory skills (Planning, Checking, Evaluating/Reflecting, Self-Efficacy for Challenges and Effort) is correlated with technical skills or perceived tactical skills and (iiii) whether technical skills, perceived tactical skills and self-regulatory skills differ according to gender or age category. …”