4093507

Finish-line photography system based on multi-scale convolutional neural network deblurring

(Zielbild-Fotografiesystem basierend auf der Bildentschärfung mit einem multiskaligen konvolutionalen neuronalen Netzwerk)

In sports science research, the dynamic non-uniform blur caused by the movement of running athletes is a challenging problem in computer vision, that seriously affects the judgment accuracy of the finish-line photography system. With the rapid development of deep learning technology, image preprocessing, object identification, and object classification have been widely used and studied. This work proposes multi-scale convolutional neural network image deblurring to eliminate dynamic blur generated by the athletes in the shooting process. This network comprises three end-to-end convolutional neural subnetworks of different scales to recover the blurry athlete image caused by various factors on the field. The system effectively extracts the detailed edge of the image on each scale from coarse to fine. Many experiments show that this method can deblur the image captured by the finish-line photography system in real-time and rapidly achieve a better visual effect in the athlete`s dynamic image.
© Copyright 2025 Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology. SAGE Publications. Alle Rechte vorbehalten.

Bibliographische Detailangaben
Schlagworte:
Notationen:Naturwissenschaften und Technik Ausdauersportarten Kraft-Schnellkraft-Sportarten Ausbildung und Forschung
Tagging:Kamera neuronale Netze deep learning
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology
Sprache:Englisch
Veröffentlicht: 2025
Online-Zugang:https://doi.org/10.1177/17543371221122082
Jahrgang:239
Heft:2
Seiten:255-263
Dokumentenarten:Artikel
Level:hoch