Concurrent validity and reliability of two portable powermeters (Power2Max vs. PowerTap) to measure different types of efforts in cycling

The purpose was to assess the concurrent validity and reliability of two portable powermeters (PowerTap vs. Power2Max) in different types of cycling efforts. Ten cyclists performed two submaximal, one incremental maximal and two supramaximal sprint tests on an ergometer, while pedaling power and cadence were registered by both powermeters and a cadence sensor (GarminGSC10). During the submaximal and incremental maximal tests, significant correlations were found for power and cadence data (r = 0.992-0.997 and 0.996-0.998, respectively, p < 0.001), with a slight power underestimation by PowerTap (0.7-1.8%, p < 0.01) and a high reliability of both powermeters (p < 0.001) for measurement of power (ICC = 0.926 and 0.936, respectively) and cadence (ICC = 0.969 and 0.970, respectively). However, during the supramaximal sprint test, their agreement to measure power and cadence was weak (r = 0.850 and -0.253, p < 0.05) due to the low reliability of the cadence measurements (ICC between 0.496 and 0.736, and 0.574 and 0.664, respectively; p < 0.05) in contrast to the high reliability of the cadence sensor (ICC = 0.987-0.994). In conclusion, both powermeters are valid and reliable for measuring power and cadence during continuous cycling efforts (~100-450 W), but questionable during sprint efforts (>500 W), where they are affected by the gear ratio used (PowerTap) and by their low accuracy in cadence recording (PowerTap and Power2Max).
© Copyright 2023 Sensors. All rights reserved.

Bibliographic Details
Subjects:
Notations:technical and natural sciences endurance sports
Tagging:Monitoring Reliabilität Validität
Published in:Sensors
Language:English
Published: 2023
Online Access:https://doi.org/10.3390/s23187745
Volume:23
Issue:18
Pages:7745
Document types:article
Level:advanced