Correlations between head rotational kinematics and brain tissue strain for low and high level football helmet impacts

This study examined the correlation between head angular velocity and acceleration with brain strain for low and high level impacts. Impacts at 2.4m/s (low) and 11m/s (high) were delivered to a American football helmeted Hybrid III headform using a centric/non-centric protocol. A finite element model calculated strain from headform accelerations. The lowlevel impact data were obtained from a previous subset eliciting angular responses occurring at 20g, therefore linear acceleration relationships were not examined. High correlations (r=>0.8) existed for non-centric conditions between strain with angular acceleration and velocity, while centric conditions had moderate relationships (r=0.50.68). This research demonstrates that kinematic-strain relationships are dependent on the impact event, and that a single variable may not represent strain under all conditions.
© Copyright 2015 ISBS - Conference Proceedings Archive (Konstanz). Springer. Published by International Society of Biomechanics in Sports. All rights reserved.

Bibliographic Details
Subjects:
Notations:biological and medical sciences sport games technical and natural sciences
Tagging:Helm
Published in:ISBS - Conference Proceedings Archive (Konstanz)
Language:English
Published: Poitiers International Society of Biomechanics in Sports 2015
Online Access:https://ojs.ub.uni-konstanz.de/cpa/article/view/6615
Volume:33
Issue:1
Pages:1141-1144
Document types:congress proceedings
Level:advanced