Using deep neural networks to detect non-analytically defined expert event labels in canoe sprint force sensor signals

(Verwendung von tiefen neuronalen Netzen zur Erkennung von nicht analytisch definierten Experten-Ereignisbezeichnungen in Kanusprint-Kraftsensorsignalen)

Abstract—Assessing an athlete`s performance in canoe sprint is often established by measuring a variety of kinematic parameters during training sessions. Many of these parameters are related to single or multiple paddle stroke cycles. Determining on- and offset of these cycles in force sensor signals is usually not straightforward and requires human interaction. This paper explores convolutional neural networks (CNNs) and recurrent neural networks (RNNs) in terms of their ability to automatically predict these events. In addition, our work proposes an extension to the recently published SoftED metric for event detection in order to properly assess the model performance on time windows. In our results, an RNN based on bidirectional gated recurrent units (BGRUs) turned out to be the most suitable model for paddle stroke detection.
© Copyright 2024 2024 IEEE International Workshop on Sport, Technology and Research (STAR), Lecco, Italy / Juli 8-10, 2024. Proceedings. Veröffentlicht von IEEE. Alle Rechte vorbehalten.

Bibliographische Detailangaben
Schlagworte:
Notationen:Kraft-Schnellkraft-Sportarten Naturwissenschaften und Technik
Tagging:deep learning maschinelles Lernen
Veröffentlicht in:2024 IEEE International Workshop on Sport, Technology and Research (STAR), Lecco, Italy / Juli 8-10, 2024. Proceedings
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 2024
Online-Zugang:https://ieeexplore.ieee.org/document/10635918
Seiten:205-210
Dokumentenarten:Artikel
Level:hoch