Collagen supplementation augments strength training-induced gains in tendon size and rate of force development in elite female master field hockey athletes

(Die Einnahme von Kollagenpräparaten verstärkt die durch Krafttraining erzielten Zuwächse an Sehnenumfang und Kraftentwicklungsrate bei Elite-Feldhockeyspielerinnen der Masterklasse)

We investigated the effects of 8-weeks of eccentric resistance exercise (RE) with hydrolyzed collagen supplementation on patellar tendon (PT) cross-sectional area (CSA), vastus lateralis (VL) muscle size, maximum voluntary force (MVF), and peak rate of force development (pRFD) in international female field hockey Master athletes. Twenty-two premenopausal women (37 ± 2 years, 68.9 ± 8.0 kg, and 1.68 ± 0.04 m) were randomly assigned to collagen (COL; n = 10) and placebo (PLA; n = 12) cohorts in a triple-blind design. They completed three eccentric RE sessions per week for 8 weeks in addition to their regular hockey training. Before each RE session, participants ingested 30 g hydrolyzed COL or 32.9 g maltodextrin (PLA), together with 500 mg vitamin C. Pre- and postintervention, we assessed MVF and pRFD during a voluntary multijoint isometric muscle contraction and countermovement jump height, and VL thickness and PT CSA were measured with ultrasonography. MVF increased from 892 ± 366 to 1,011 ± 420 N (p = .020) and VL thickness increased from 21 ± 3 to 22 ± 3 mm (p = .015), with no Group × Time interactions (p > .05), whereas countermovement jump height did not change (p = .238). PT CSA increased in both groups (p < .001) but more in COL (116 ± 12 to 121 ± 13 mm2) than PLA (109 ± 22 to 111 ± 22 mm2, p = .014). Similarly, pRFD increased in both groups (p = .002) but more in COL (7.9 ± 1.3 to 10.1 ± 2.4 kN/s) than PLA (8.2 ± 2.4 to 9.6 ± 2.9 kN/s, p = .039). Therefore, hydrolyzed collagen supplementation enhanced gains in PT CSA and pRFD following 8 weeks of eccentric RE in elite female field hockey Master athletes, thus providing an effective strategy to improve physical performance in this underresearched population.
© Copyright 2025 International Journal of Sport Nutrition and Exercise Metabolism. Human Kinetics. Alle Rechte vorbehalten.

Bibliographische Detailangaben
Schlagworte:
Notationen:Spielsportarten Biowissenschaften und Sportmedizin
Tagging:Vitamin C
Veröffentlicht in:International Journal of Sport Nutrition and Exercise Metabolism
Sprache:Englisch
Veröffentlicht: 2025
Online-Zugang:https://doi.org/10.1123/ijsnem.2025-0089
Jahrgang:35
Heft:6
Seiten:510-519
Dokumentenarten:Artikel
Level:hoch