Pass receiver and outcome prediction in soccer using temporal graph networks

This paper explores the application of the Temporal Graph Network (TGN) model to predict the receiver and outcome of a pass in soccer. We construct two TGN models that estimate receiver selection probabilities (RSP) and receiver prediction probabilities (RPP) to predict the intended and actual receivers of a given pass attempt, respectively. Then, based on these RSP and RPP, we compute the success probability (CPSP) of each passing option that the pass is successfully sent to the intended receiver as well as the overall pass success probability (OPSP) of a given situation. The proposed framework provides deeper insights into the context around passes in soccer by quantifying the tendency of passers` choice of passing options, difficulties of the options, and the overall difficulty of a given passing situation at once.
© Copyright 2024 Machine Learning and Data Mining for Sports Analytics. MLSA 2023. Communications in Computer and Information Science. Published by Springer. All rights reserved.

Bibliographic Details
Subjects:
Notations:sport games technical and natural sciences
Tagging:Netzwerk Passspiel deep learning
Published in:Machine Learning and Data Mining for Sports Analytics. MLSA 2023. Communications in Computer and Information Science
Language:English
Published: Cham Springer 2024
Series:Communications in Computer and Information Science, 2035
Online Access:https://doi.org/10.1007/978-3-031-53833-9_5
Pages:52-63
Document types:article
Level:advanced