Bone bending strength and BMD of female athletes in volleyball, soccer, and long-distance running

Purpose The purpose of the study was to determine whether sports training comprised of (1) high-impact loading sport in volleyball (VOL), (2) odd impact loading sport in soccer (SOC), and (3) low impact sport in distance running (RUN) were associated with tibial bending strength and calcaneus bone mineral density (BMD), and ulnar bending strength and wrist BMD. Method Female athletes comprised of 13 VOL, 22 SOC, and 22 RUN participated in the study. Twenty-three female non-athletes (NA) served as the comparison group. Tibial and ulnar bending strength (EI, Nm2) were assessed using a mechanical response tissue analyzer (MRTA). Calcaneus and wrist BMD were assessed using a peripheral X-ray absorptiometry. Group means differences among the study groups were determined using ANCOVA with age, weight, height, percent body fat, ethnicity/race, and training history serving as covariates. Results Tibial EI of VOL (228.3 ± 138 Nm2) and SOC (208.6 ± 115 Nm2) were greater (p < 0.05) compared to NA (101.2 ± 42 Nm2). Ulnar EI of SOC (54.9 ± 51 Nm2) was higher (p < 0.05) than NA (27.2 ± 9 Nm2). Calcaneus BMD of VOL (0.618 ± 0.12 g/cm2), SOC (0.621 ± 0.009 g/cm2), and RUN (0.572 ± 0.007 g/cm2) were higher (p < 0.05) than NA (0.501 ± 0.08 g/cm2), but not different between athletic groups. Wrist BMD of VOL (0.484 ± .06 g/cm2) and SOC (0.480 ± 0.06 g/cm2) were higher (p < 0.05) than NA (0.443 ± 0.04 g/cm2). Conclusions Female VOL athletes exhibit greater tibial bending strength than RUN and NA, but not greater than SOC. Female SOC athletes exhibit greater ulnar bending strength and wrist BMD than NA.
© Copyright 2023 European Journal of Applied Physiology. Springer. All rights reserved.

Bibliographic Details
Subjects:
Notations:biological and medical sciences sport games endurance sports
Tagging:Schienbein
Published in:European Journal of Applied Physiology
Language:English
Published: 2023
Online Access:https://doi.org/10.1007/s00421-023-05231-2
Volume:123
Issue:10
Pages:2213-2223
Document types:article
Level:advanced