A Gaussian mixture clustering model for characterizing football players using the EA Sports' FIFA video game system
(Ein gemischtes Gaussches Clusteringmodel zur Beschreibung von Fußballspielern, die das EA Sports' FIFS Videospiesystem nutzen)
The generation and availability of football data has increased considerably last decades, mostly due to its popularity and also because of technological advances. Gaussian mixture clustering models represents a novel approach to exploring and analyzing performance data in sports. In this paper, we use principal components analysis in conjunction with a model-based Gaussian clustering method with the purpose of characterizing professional football players. Our model approach is tested using 40 attributes from EA Sports' FIFA video game series system, corresponding to 7705 European players. Clustering results reveal a clear distinction among different performance indicators, representing four different roles in the team. Players were labeled according to these roles and a gradient tree boosting model was used for ranking attributes regarding to its importance. We found that the dribbling skill is the most discriminating variable among the different clustered players` profiles.
© Copyright 2017 Revista Internacional de Ciencias del Deporte. Alle Rechte vorbehalten.
| Schlagworte: | |
|---|---|
| Notationen: | Spielsportarten |
| Tagging: | maschinelles Lernen |
| Veröffentlicht in: | Revista Internacional de Ciencias del Deporte |
| Sprache: | Englisch Spanisch |
| Veröffentlicht: |
2017
|
| Online-Zugang: | https://doi.org/10.5232/ricyde2017.04904 |
| Jahrgang: | 49 |
| Heft: | 13 |
| Seiten: | 244-259 |
| Dokumentenarten: | Artikel |
| Level: | hoch |