Discovering methods of scoring in soccer using tracking data
(Neue Methoden für den Torerfolg im Fußball mithilfe von Trackingdaten)
In soccer, when analyzing the performance of a team one of the key events to analyze is that of shots and goal-scoring. With the availability of fine-grained player and ball tracking data, it is now possible to nd the common patterns a team uses via clustering multi-agent trajectories. The e ectiveness of these methods can be then quanti ed by using a "expected goal value" (EGV) model which was recently proposed. Using an entire season of player and ball tracking data from Prozone, we show a method of both "discovering" and "quantifying" goal scoring methods of a team, which we also use to compare the "goal-scoring styles" of teams.
© Copyright 2015 KDD Workshop on Large-Scale Sports Analytics. Alle Rechte vorbehalten.
| Schlagworte: | |
|---|---|
| Notationen: | Spielsportarten Naturwissenschaften und Technik |
| Tagging: | Big Data |
| Veröffentlicht in: | KDD Workshop on Large-Scale Sports Analytics |
| Sprache: | Englisch |
| Veröffentlicht: |
Sydney
2015
|
| Online-Zugang: | http://large-scale-sports-analytics.org/Large-Scale-Sports-Analytics/Submissions2015_files/paperID19-Tharindu.pdf |
| Seiten: | 1-4 |
| Dokumentenarten: | Kongressband, Tagungsbericht |
| Level: | hoch |