Feature extraction and aggregation for predicting the EURO 2016

(Merkmalsextraktion und Aggregation für die Vorhersage der EURO 2016)

This paper is addressing the challenge of predicting Euro 2016 outcomes. A set of processed features alongside with a new proposed feature are used to train a linear model to compute scores of 24 participating countries. The obtained scores form fwin, lose, drawg probabilities for all possible xtures. The empirical evaluation until the seminals shows that the conceptually simple approach proves accurate for countries with historical data.
© Copyright 2016 Machine Learning and Data Mining for Sports Analytics ECML/PKDD 2016 workshop. Veröffentlicht von Department of Computer Science, KU Leuven. Alle Rechte vorbehalten.

Bibliographische Detailangaben
Schlagworte:
Notationen:Naturwissenschaften und Technik
Tagging:data mining
Veröffentlicht in:Machine Learning and Data Mining for Sports Analytics ECML/PKDD 2016 workshop
Sprache:Englisch
Veröffentlicht: Leuven Department of Computer Science, KU Leuven 2016
Online-Zugang:https://dtai.cs.kuleuven.be/events/MLSA16/papers/paper_3.pdf
Seiten:1-7
Dokumentenarten:Artikel
Level:hoch