Suchergebnisse - Machines
-
1
Specificity of the response of the body of children with motor limitations and cerebral palsy when performing active physical exercises using exercise equipment (Spezifität der Reaktion des Körpers von Kindern mit motorischen Einschränkungen und Zerebralparese bei der Durchführung aktiver körperlicher Übungen unter Verwendung von Trainingsgeräten)
Gross, N. A., Sharova, T. L., Molokanov, A. V.Veröffentlicht in Theory and Practice of Physical Culture (2025)“… The study involved children with cerebral palsy of primary school age. Exercise machines and other methods of physical exercise included in the rehabilitation session were used. …”
-
2
Data-driven techniques for estimating energy expenditure in wheelchair users (Datengestützte Techniken zur Schätzung des Energieverbrauchs von Rollstuhlfahrern)
Doshmanziari, R., Aandahl, H. S., Reierstad, H. P., Danielsson, M. L., Baumgart, J. K., Varagnolo, D.Veröffentlicht in IEEE Transactions on Neural Systems and Rehabilitation Engineering (2025)“… We extracted features from heart rate, inertial measurement units (IMU), and individual personal characteristics to develop activity classification and EE estimation algorithms and investigate the influence of personal characteristics on EE estimates. Support Vector Machines were selected as classifiers, while Support Vector Regressors, Gaussian Processes, Random Forest, XGBoost, and Neural Networks were selected as regression models. …”
-
3
Towards an accurate rolling resistance: Estimating intra-cycle load distribution between front and rear wheels during wheelchair propulsion from inertial sensors (Auf dem Weg zu einem genauen Rollwiderstand: Schätzung der Lastverteilung zwischen Vorder- und Hinterrädern während des Rollstuhlantriebs durch Trägheitssensoren)
van Dijk, M. P., Heringa, L. I., Berger, M. A., Hoozemans, M. J., Veeger, D. H.Veröffentlicht in Journal of Sports Sciences (2024)“… Based on two inertial sensors (attached to the trunk and wheelchair) and the machine learning model, front wheel load was predicted with a mean absolute error (MAE) of 3.8% (or 1.8 kg). …”
-
4
Design and test of a biomechanical model for the estimation of knee joint angle during indoor rowing: Implications for FES-rowing protocols in paraplegia (Entwurf und Test eines biomechanischen Modells für die Schätzung des Kniegelenkwinkels beim Indoor-Rudern: Implikationen für FES-Ruderprotokolle bei Querschnittslähmung)
Vieira, T., Cerone, G. L., Gastaldi, L., Pastorelli, S., Oliveira, L. F., Gazzoni, M., Botter, A.Veröffentlicht in IEEE Transactions on Neural Systems and Rehabilitation Engineering (2018)“… Knee angle was estimated from the rowing machine seat position, measured with a linear encoder, and transmitted wirelesslyto a computer. …”
-
5
Quantification of pulling force during a incremental rowing test in para-athletes: pilot study (Quantifizierung der Zugkraft während eines inkrementellen Rudertests bei Para-Sportlern: Pilotstudie)
Pradon, D., Diry, A., Mahieu, M., Li, T., Amelon-Petit, C.Veröffentlicht in 28th Annual Congress of the European College of Sport Science, 4-7 July 2023, Paris, France (2023)“… METHODS: 6 para-rowers of national and elite level perform a 3-minute incremental test with 30 seconds of recovery on a rowing machine (RowErg, Concept C2, USA). The pulling force is recorded during the test (K-Pull, Kinvent, France). …”
-
6
WISP, Wearable Inertial Sensor for Online Wheelchair Propulsion Detection (WISP, Wearable Inertial Sensor für online Erkennung des Rollstuhlantriebs)
Callupe Luna, J., Martinez Rocha, J., Monacelli, E., Foggea, G., Hirata, Y., Delaplace, S.Veröffentlicht in Sensors (2022)“… Within our initial configuration, three inertial sensors were placed on the hands and the back. Two machine learning classifiers were used for online bilateral recognition of basic propulsion gestures (forward, backward, and dance). …”
-
7
Zukunftsperspektive von Sportinformatik & Sporttechnologie im Leistungs- und Breitensport
U. Fehr, V. WernerVeröffentlicht 2021“… A focus on notational derived metrics " Session Messtechnik und Datenanalyse 2 " Innotramp - Pilot zur automatisierten single-sensor Sprungklassifizierung im Turnen " Entwicklung eines Machine-Learning-Tools zur automatisierten Erkennung und Klassifikation von Kopfballereignissen auf der Basis von 3D-Beschleunigungsdaten eines am Kopf getragenen Inertialsensors " Collective tactical behaviours in football from positional data " Messtechnische Erfassung zeitlich-räumlicher Parameter beim Gehen " Analyse von Gangparametern oberschenkelamputierter Menschen hinsichtlich der existierenden Einteilung in eine Mobilitätsklasse " Using sentiment analysis tools to analyze sports-related Twitter communication " Session Sportgeräteentwicklung, neue Materialien im Sport " Hat der Beckengurt am Radrucksack eine lastenaufnehmende Funktion? …”
-
8
Evaluation of grip force and energy efficiency of the "Federica" hand (Evaluation der Griffkraft und energetischen Effizienz der "Federica"-Hand)
Esposito, D., Savino, S., Cosenza, C., Andreozzi, E., Gargiulo, G. D., Polley, C., Cesarelli, G., D`Addio, G., Bifulco, P.Veröffentlicht in Machines (2021)“… Machines …”
-
9
Using interactive machine learning to sonify visually impaired dancers' movement (Interaktives maschinelles Lernen zur Sonifizierung der Bewegung von sehbehinderten Tänzern)
Katan, S.Veröffentlicht in Proceedings of the 3rd International Symposium on Movement and Computing (2016)“… This preliminary research investigates the application of Interactive Machine Learning (IML) to sonify the movements of visually impaired dancers. …”
-
10
Load-velocity relationship in national paralympic powerlifters: A case study (Beziehung zwischen Belastung und Geschwindigkeit bei nationalen paralympischen Gewichthebern : Eine Fallstudie)
Loturco, I., Pereira, L. A., Winckler, C., Santos, W. L., Kobal, R., McGuigan, M.Veröffentlicht in International Journal of Sports Physiology and Performance (2019)“… Methods: A total of 17 national Paralympic powerlifters performed maximum dynamic strength tests to determine their BP 1-repetition maximum (1RM) in a Smith-machine device. A linear position transducer was used to measure movement velocity over a comprehensive range of loads. …”
-
11
Strength and conditioning: biological principles and practical applications (Kraft und Konditionierung: biologische Prinzipien und praktische Anwendungen)
M. Cardinale, R. Newton, K. NosakaVeröffentlicht 2011“… Newton). 1.8.1 Introduction. 1.8.2 Biomechanical concepts for strength and conditioning. 1.8.3 The force-velocity-power relationship. 1.8.4 Musculoskeletal machines. 1.8.5 Biomechanics of muscle function. 1.8.6 Body size, shape, and power-to-weight ratio. 1.8.7 Balance and stability. 1.8.8 The stretch-shortening cycle. 1.8.9 Biomechanics of resistance machines. 1.8.10 Machines vs free weights. 1.8.11 Conclusion. 2.1 Neural Adaptations to Resistance Exercise (Per Aagaard). 2.1.1 Introduction. 2.1.2 Effects of strength training on mechanical muscle function. 2.1.3 Effects of strength training on neural function. 2.1.4 Conclusion. 2.2 Structural and Molecular Adaptations to Training (Jesper L. …”
-
12
The physiology of world-class sledge ice-hockey players (Die Physiologie von Weltklasse Sledge-Eishockeyspielern)
Sandbakk, O., Bucher, S., Skovereng, K., Welde, B., Ettema, G.Veröffentlicht in 17th Annual Congress of the European College of Sport Science (ECSS), Bruges, 4. -7. July 2012 (2012)“… In the laboratory, a 3-min all out poling ergometer test was performed sitting in a modified poling machine to determine peak respiratory parameters, and 1 repetition maximal strength and peak power was assessed in the bench press (BPr), bench pull (BPu) and pull-down (PD) exercises. …”