Part-based player identification using deep convolutional representation and multi-scale pooling

(Teilbasierte Identifizierung von Spielern auf der Grundlage von tiefer konvolutioneller Darstellung und Pooling auf mehreren Ebenen)

This paper addresses the problem of automatic player identification in broadcast sports videos filmed with a single side-view medium distance camera. Player identification in this setting is a challenging task because visual cues such as faces and jersey numbers are not clearly visible. Thus, this task requires sophisticated approaches to capture distinctive features from players to distinguish them. To this end, we use Convolutional Neural Networks (CNN) features extracted at multiple scales and encode them with an advanced pooling, called Fisher vector. We leverage it for exploring representations that have sufficient discriminatory power and ability to magnify subtle differences. We also analyze the distinguishing parts of the players and present a part based pooling approach to use these distinctive feature points. The resulting player representation is able to identify players even in difficult scenes. It achieves state-of-the-art results up to 96% on NBA basketball clips.
© Copyright 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE. Veröffentlicht von IEEE. Alle Rechte vorbehalten.

Bibliographische Detailangaben
Schlagworte:
Notationen:Naturwissenschaften und Technik Spielsportarten
Tagging:neuronale Netze Algorithmus
Veröffentlicht in:IEEE/CVF Conference on Computer Vision and Pattern Recognition
Sprache:Englisch
Veröffentlicht: Salt Lake City IEEE 2018
Online-Zugang:https://doi.org/10.1109/CVPRW.2018.00225
Seiten:1813-1820
Dokumentenarten:Artikel
Level:hoch