Cadence paradox in cycling—Part 1: Maximal lactate steady state and carbohydrate utilization dependent on cycling cadence

Purpose To assess (1) whether and how a higher maximal lactate steady state (MLSS) at higher cycling cadence (RPM) comes along with higher absolute and/or fractional carbohydrate combustion (CHOMLSS), respectively, and (2) whether there is an interrelation between potential RPM-dependent MLSS effects and the maximally achievable RPM (RPMMAX). Methods Twelve healthy males performed incremental load tests to determine peak power, peak oxygen uptake, and 30-minute MLSS tests at 50 and 100 per minute, respectively, to assess RPM-dependent MLSS, corresponding power output, CHOMLSS responses, and 6-second sprints to measure RPMMAX. Results Peak power, peak carbon dioxide production, and power output at MLSS were lower (P = .000, w^2 = 0.922; P = .044, w^2 > 0.275; and P = .016, w^2 = 0.373) at 100 per minute than at 50 per minute. With 6.0 (1.5) versus 3.8 (1.2) mmol·L-1, MLSS was higher (P = .000, w^2 = 0.771) at 100 per minute than at 50 per minute. No corresponding RPM-dependent differences were found in oxygen uptake at MLSS, carbon dioxide production at MLSS, respiratory exchange ratio at MLSS, CHOMLSS, or fraction of oxygen uptake used for CHO at MLSS, respectively. There was no correlation between the RPM-dependent difference in MLSS and RPMMAX. Conclusions The present study extends the previous finding of a consistently higher MLSS at higher RPM by indicating (1) that at fully established MLSS conditions, respiration and CHOMLSS management do not differ significantly between 100 per minute and 50 per minute, and (2) that linear correlation models did not identify linear interdependencies between RPM-dependent MLSS conditions and RPMMAX.
© Copyright 2024 International Journal of Sports Physiology and Performance. All rights reserved.

Bibliographic Details
Subjects:
Notations:endurance sports biological and medical sciences
Tagging:Trittfrequenz Steady-State
Published in:International Journal of Sports Physiology and Performance
Language:English
Published: 2024
Online Access:https://doi.org/10.1123/ijspp.2023-0427
Volume:19
Issue:6
Pages:558-564
Document types:article
Level:advanced